TITLE of course: COMPUTATIONAL PHYSICS

Nodal Department of HEI to run course:

Broad Area/Sector: Scientific Computing

Sub Sector: Computation

Nature of course: Progressive

If Progressive: Level I

Suggestive Sector Skill Council: IT-ITES Sector Skill Council

Aliened NSQF Level:

Expected Course Fees: Free/ Paid:

Stipend to student expected from Industry:

Number of Seats:

Course Code: (Credits-3: Theory-01, Practical-02)

Max. Marks: Internal + External (25+75) Min. Passing Marks:

Name of proposed Skill/Training Partner:

Job Prospects (Expected Fields of Occupation): Scientific Programming, Research.

Syllabus								
Unit	Topics	General/Skill component	Theory/Practical/ OJT/Internship/Training	No. of Theory Hours	No. of Skill Hours			
I	Algorithms and Flowcharts	Introduction: Importance of computers in Physics, Basics of scientific computing, Binary and decimal arithmetic, Floating point numbers, Sequence, Single and double precision, Underflow and overflow, Algorithms, Flowchart.	2. Exercises on Input, Output and arithmetic	5	10			

II	Scientific Programming (Part I)	Development of FORTRAN, Basic elements of FORTRAN: Character Set, Constants and their types, Variables and their types, Keywords, Variable Declaration, Concept of instruction and program, Operators and their types, Expressions and their	 To print out all natural even/odd numbers between given limits. To find maximum, minimum and range of a given set of numbers. To evaluate sum of finite series and the area under a curve. 	20
		types. FORTRAN Statements.		
III	Scientific Programming (Part II)	Control Statements: Types of Logic (Sequential, Selection, Repetition), Branching statements, Looping Statements, Jumping Statements, Types of Arrays, DIMENSION Statement, Functions and Subroutines, RETURN, CALL, COMMON and EQUIVALENCE Statements.	 Exercises on Loop programming. To find the product of two matrices To find a set of prime numbers and Fibonacci series. To find the roots of a quadratic equation. 	30

Suggested Readings:

- Rajaraman, V., "Computer Programming in Fortran 90 and 95", PHI Learning Pvt. Ltd., India, 2006, 1e.
- Lipschutz, S. and Poe, A., "Schaum's Outline of Theory and Problems of Programming with Fortran", Mc-Graw Hill International, 1982, 5e.
- Verma R. C., Ahluwalia, P. K., Sharma, K. C., "Computational Physics: An Introduction", New Age International Publishers, New Delhi, 1999, 1e.

Suggested Digital platforms/ web links for reading

- Uttar Pradesh Higher Education Digital Library: http://heecontent.upsdc.gov.in/Home.aspx
- Swayam Prabha-DTH Channel: https://www.swayamprabha.gov.in/index.php/home

<u>Suggested OJT/Internship/Training/Skill partner</u>: Institution <u>Suggested Continuous Internal Evaluation (CIE) Methods:</u>

Assessment Criteria for Outcomes: Theory/MCQ/Practical/Project/Viva

Theory: Test / Quiz / Assignment / Seminar/ Class Interaction.

Practical: Record File (depending upon the no. of experiments performed out of the total assigned experiments)/ Viva Voce/ Class Interaction

<u>Course Prerequisites:</u> To study this course, a student must have the subject: Physics in 12th / Mathematics in 12th.

Suggested equivalent Online Courses

- 1. Swayam Government of India, https://swayam.gov.in/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html

Any remarks/ Suggestions

The institution may add/modify the experiments of the same standard in the paper.

Books published in Hindi & other Reference/Text Books may be added to this list by individual institutes.

Other Digital Platforms/Web Links and Equivalent Online Courses may be added by individual institutes.